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INTRODUCTION

A nation’s economic growth reduces poverty, 
provides infrastructure and improves people’s 
lifestyles. However, the economic growth per se 
is neither sustainable nor achievable, mainly be-
cause it stimulates the extraction and consump-
tion of natural resources, which can no longer 
keep up the pace with current demands (Danish et 
al., 2019; Ahmed, 2020). For this reason, the to-
day’s economic success must not be at the risk of 
the environment, since the tomorrow’s well-being 
depends on it (Anand & Sen, 2000). Therefore, a 
proper interpretation of EF enhances the devel-
opment of instruments and public policies in ur-
ban, economic and environmental matters, help-
ing the population to live within the ecological 
budget, in order to overcome the existing models 

of sustainable cities such as Curitiba (Brazil) and 
Portland (USA) (Martinez, 2009). 

EF is an instrument based on a system of indi-
cators, usually used to study the impact caused by 
a determined consumption styles of a population 
or an individual on an ecosystem, the underlying 
context of which recognizes that the Earth has a 
finite amount of biological production, capable of 
sustaining all its life on it (Galli et al., 2014; Lin 
et al., 2018; Mancini et al., 2018; Ulucak & Lin, 
2017). Ergo, EF reflects the environmental degra-
dation (Charfeddine & Mrabet, 2017; Mrabet et 
al., 2016) and the influence of human activities 
on the land (Destek et al., 2018). EF per person is 
based on the fact that the planet Earth has about 
12.6 billion productive ecological hectares from 
which, when divided by the total world popula-
tion and 12% of the area for the maintenance of 
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biodiversity, corresponds to each individual, or 
what it is equal to 2.2 hectares on average as eco-
logical footprint. Nevertheless, currently, every-
one exceeds this allocation by 30%, estimating 
that by the year 2050, when the world population 
will reach approximately 10 billion inhabitants, 
the productive ecological area will have decreased 
to 1 ha/inhabitant (Martínez, 2009; Borucke et al., 
2013). In addition, this ecological deficit happens 
when the consumption of resources and/or the 
production of human waste surpasses the Earth’s 
capacity to generate these resources and/or absorb 
the waste (Badii, 2008). If EF is greater than the 
carrying capacity, it means that there is an eco-
logical deficit, i.e., the region is not self-sufficient 
because it consumes more resources than those it 
has available or, on the contrary, if such resources 
do not exceed the region, then it could be claimed 
that the region is sustainable or self-sufficient.

In this regard, in accordance with the 2017 
“Ecological Footprints of Nations” report for 184 
countries examined, Qatar (14.7 gha/inhab), Lux-
embourg (12.8 gha/inhab), United Arab Emir-
ates (8.9 gha/inhab), Bahrain (8.7 gha/inhab) and 
Trinidad and Tobago (8.2 gha/inhab) presented 
the highest ecological footprint. In turn, the low-
est values were found in Eritrea (0.5 gha/inhab), 
Burundi, Yemen and Haiti (0.6 gha/inhab), Timor-
Leste and Afghanistan (0.7 gha/inhab). The coun-
tries with a high EF also have a high ecological 
deficit and are therefore importing biocapacity 
through international trade, depleting their na-
tional ecological assets and polluting the atmo-
sphere with residual carbon dioxide emissions 
(Ahmed et al., 2020).  In the case of Ecuador, it 
ranked 130th, with an ecological footprint value 
of 1.7 gha/inhab. In other words, the area has 
considerable reserves. The country’s biocapacity 
exceeds its ecological footprint by 14%. Ecuador 
is a producer and exporter of raw materials, sup-
plying natural resources to other countries, which 
action contributes to the ecological deficit. For 
example, in 2009, 119.6 million barrels of crude 
oil were exported, contributing 40% of the coun-
try’s export footprint (MAE, 2013). Since 1961 
to 2011, biocapacity per capita was reduced by 
68.15% from 7.50 to 2.39 gha/inhab. In turn, EF 
increased, only from 2008 to 2011, by 34.6% 
(MAE, 2014). Moreover, between 2001 and 2015, 
total greenhouse gas emissions were increased, 
causing a cost amounting to $544.575.390, a val-
ue which was generated by the industrialization 

processes that are not environmentally friendly 
(Sánchez et al., 2020). 

By analyzing the factors affecting EF, re-
cent studies have focused on the greenhouse gas 
emissions, renewable and non-renewable energy 
use, real earnings, urbanization, lease of natural 
resources by means of dynamic ordinary least 
squares (DOLS) estimators, as seemingly unrelat-
ed co-integrating and dynamic regression models, 
or fully modified ordinary least squares (FMOLS)  
(Wang et al., 2020; Danish et al., 2020; Charf-
eddine & Mrabet, 2017; Alola et al., 2019), hu-
man capital through pooled cointegration tests 
(Ahmed & Wang,  2019). These models have 
been widely developed and applied to assess the 
environmental quality and guiding environmen-
tal governance. Under this context, the present 
research seeks to comprehend: 1) the long-term 
trends of EF, biocapacity, GDP, population and 
CO2 emissions for the period 1961–2016 and 2) 
how changes in the demographic, economic and 
biocapacity indicators affect EF in Ecuador.

MATERIAL AND METHODS

Data and variables

Fifty-six observations (1961–2016) and five 
variables were used in this research: 
a) Ecological footprint of consumption in global 

hectares (gha) divided by population as the de-
pendent variable. EF is measured as the sum of 
land used for cultivation and grazing, fishing 
grounds, forest land, and carbon footprint and 
facility construction (Zambrano-Monserrate et 
al., 2020). 

b) Biocapacity in global hectares (gha) divided 
by population. This variable measures the ca-
pacity of ecosystems to regenerate what people 
demand from those surfaces; it is calculated 
by multiplying the physical area by the yield 
factor and the appropriate equivalence factor 
(supply). EF and biocapacity contribute to en-
vironmental degradation and explain its behav-
ior (Danish et al., 2020; Zambrano-Monserrate 
et al., 2020). 

c) Total population is based on the de-facto defi-
nition of population, which includes all resi-
dents, regardless of their legal or citizenship 
status, with the exception of refugees tempo-
rarily settled in the country of asylum, who 
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are usually considered part of the population 
of their country of origin. The values displayed 
are mid-year estimates.

d) Gross domestic product (GDP) in USD at con-
stant 2010 prices. It is the sum of gross ag-
gregate value of all resident producers in the 
economy, plus any taxes on products, except 
any subsidies which were not included in the 
value of products.

e) CO2 emissions in kt per PPP $ of GDP are those 
that would otherwise come from fossil fuel 
combustion and cement manufacturing. They 
include the carbon dioxide produced during the 
consumption of liquid, solid, and gaseous fuels 
and from gas flaring.

All the data of EF and biocapacity was taken 
from the Global Footprint Network (http://data.
footprintnetwork.org/), while trade openness data 
for GDP, CO2 emissions and total population were 
taken from the World Bank (https://data.world-
bank.org/). All the variables were transformed in 
natural logarithms (ln).

These variables have been widely used 
in EF analysis (Ahmed, 2020; Danish et al., 
2020; Destek & Sinha, 2020; Kassouri, 2020; 
Zambrano-Monserrate et al., 2020). Using the 
five variables, the normality test was performed 
using a Kolmogorov-Smirnov test and, in order to 
check whether the annual data presents the same 
variance or if it is very close to be the same (ho-
mogeneity of variance), a Levene’s test was ap-
plied (Carroll & Schneider, 1985). 

Long-term trends analysis

Once the statistical analysis of the five vari-
ables was completed, the trends were determined 
on an annual scale, using the Mann Kendall non-
parametric test (Mann, 1945; Kendall, 1975), to 
three statistical confidence levels: 90%, 95% and 
99%. This test detects the changes in the average 
of the observed data and does not assume inde-
pendence between them, being useful for season-
al data and recommended to evaluate the trend in 
environmental data series (Yu & Kao, 2007). The 
Mann Kendall test is initially based on the calcu-
lation of the S-statistic, defined as the following:

(1)

where: 

(2)

where: n is the sample size y;  xj and xi are sequen-
tial data. For large samples, the S-statistic 
is normally distributed with an average of 
zero and a variance of:

(3)

where: Σt indicates that the term (t-1) (2t+5) and 
is evaluated for the t groups of existing 
ties in the series.

If S> 0: (4)

If  S = 0: (5)

If  S  0: (6)

In addition, this method considers the null 
hypothesis when there is no trend in the series, 
and an alternative hypothesis when the vari-
able increases or decreases constantly over time 
(Güçlü, 2018). In addition to identifying trends, 
their magnitude was calculated by using a Sen’s 
slope estimator (Sen’s slope estimator Thiel-Sen 
test). This nonparametric method determines the 
decrease or increase per unit of time in a linear 
trend, representing the average slope of a linear 
regression (Sen, 1968; Theil, 1992). 

Empirical model of ecological footprint

Main component analysis

For multiple regression analysis we have a set 
of predicting (independent) variables from which 
we want to calculate the FE (dependent). How-
ever, several situations can occur: 
a) All predictors are essential for accurate 

prediction;
b) Some predictors may not have predictive val-

ues (and therefore, can be eliminated);
c) The existence of subsets of predictors, partially 
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or completely separate, that provide a predic-
tion as accurate as the full set of predictors 
(Hawkins, 1973). 

Therefore, it is important to evaluate if there 
is an exact multicollinearity between some of the 
predictors, and whether this was done by using 
the latent root regression technique (Hawkins, 
1973; Jeffers, 1981). This technique is an exten-
sion of a main component analysis (PCA) and 
consists of including the dependent variable (EF) 
in the analysis. PCA is a data mining technique 
that linearly transforms the original set of vari-
ables into a smaller set of uncorrelated variables; 
this set maintains most of the variance of the orig-
inal set (Duntenam, 1989). The advantage of this 
method is its ability to identify multicollinearities 
(Hawkins, 1973). Principal components (PCs) are 
linear combinations of the original variables:

(7)

where: PCi is the  i-th main component and 
 aij is the coefficient of the main compo-

nent PCi   of the original variable xj. 

Multiple linear regression analysis

The HF prediction was made using a multi-
ple linear regression (MLR) model, based on the 
analysis of various factors, in which it is assumed 
that more than one variable (independent) has an 
influence and/or is correlated with the value of 
a third variable (objective). This method has the 
advantage of using more information in the con-
struction of the model and, therefore, more accu-
rate estimates can be obtained (Vasallo, 2015). A 
linear model that relates a response variable and 
to a set of predictors be:

(8)

where:  are the regression 
coefficients;

  are independent variables or 
predictors and ϵ is a random error term 
that represents random fluctuations or 
measurement errors.

In our case study, y represents the EF vari-
able. In addition, the dependent variables to be 
considered include: biocapacity, population, CO2 
concentration, GDP and/or some transformation 

of these variables. For the exponential-type re-
lationships, the logarithm-type transformations 
were taken. In order to analyze which of these 
variables (or their corresponding transformations) 
generate a much more robust and statistically sig-
nificant model, the Akaike criterion (AIC) was 
used for the step-by-step selection methods. Un-
der the principle of parsimony, the models with 
fewer variables will be preferred, so the use of 
variable selection methods is indispensable.

Step-by-step regression

Step-by-step regression is a method of adjust-
ing regression models where the choice of predic-
tive variables is done by an automatic procedure 
(Efroymson, 1960). At each step, a variable is 
added or removed from the explanatory variable 
set, based on some prespecified criteria. F-tests 
or t-tests are generally used, but other techniques 
are possible as well, such as adjusted-R2, AIC, 
Bayesian information criterion, Mallows Cp, 
PRESS, among others.

Three main step-by-step regression methods 
are distinguished: forward selection, backward 
deletion, and bidirectional deletion. Both forward 
selection and bidirectional deletion can discard 
the variables that are individually unpredictive, 
but still, in conjunction with other variables can 
effectively contribute to the model. On the other 
hand, backward elimination has the advantage of 
evaluating the combined predictive capacity of 
variables, since the process begins with all vari-
ables included in the model. Backward deletion 
also removes less important variables from the 
beginning and leaves only the most important 
ones in the model. However, one disadvantage 
of the backward removal method, is that once 
a variable is removed from the model, it cannot 
be re-entered, whereas a discarded variable can 
become more significant, later in the final model 
(Chowdhury & Turin, 2020).  In general, there 
is no consensus as to which method is more ap-
propriate (Royston et al., 2009). Nonetheless, the 
backward removal method was used, which has 
been proven to generate better results in terms of 
adjusted-R2. The Akaike Information Criterion 
(AIC) was also used to determine which variables 
leave the model in each iteration of the algorithm.

Akaike Information Criterion 

The AIC is a tool that compares different mod-
els. The step-by-step selection methods include or 
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exclude variables by generating a different model 
in each iteration. AIC provides a criterion for se-
lecting a balanced model (not too few, not too 
many variables).  Including too few variables of-
ten fails to capture the true relationship, while too 
many variables create a generalization problem. 
A model cannot accurately represent the exact re-
lationship that exists in the data, as it will always 
generate information loss, especially when a lim-
ited number of variables is considered. It is be-
lieved that the quality of the model is better with 
minimal loss of information, so that it is mostly 
relevant to select the model that best minimizes 
such loss, that is, one that effectively lowers the 
AIC values, usually representing the models with 
a minimal loss of data (Akaike, 1974; Burnham & 
Anderson, 2004).

For general cases, the AIC is calculated

(9)

where: k is the number of parameters in the sta-
tistical model and 

 L is the maximum value of the likelihood 
function for the estimated model. L is a 
measure of model fit, the greater the L, the 
better the adjustment

For small samples , it is recom-
mended to use a second-order AIC:

(10)

where: n the number of observations.

Linear regression model validation

A validation of the multiple regression model 
was performed, using the adjusted determination 
coefficient (adjusted-R2), e root mean square error 
(RMSE), Nash–Sutcliffe coefficient (NSE) and 
BIAS, defined below.

RMSE: is based on the observed and simu-
lated data for a given period (Ćalasan et al., 2020) 
and can be expressed with the following equation:

(11)

where:  is the observed data, 
  is the data obtained by the y model, 
 and n is the number of observations.

The Nash–Sutcliffe coefficient (NSE) sets the 
relative magnitude of residual variance compared 
to the observed data variation and is calculated as 
one, minus the reason for the error variance of the 
simulated data, divided by the variance of the ob-
served data series. A perfect predictive model fit 
is given by the unit, but a negative value indicates 
that a model does not fit the observed data (Nash 
& Sutcliffe, 1970).

(12)

where:  are the observed values of the depen-
dent variable; 

  are the values that result from the ap-
plication of the y model;

  is the average of the observed over the 
data period.

The relative bias “BIAS”, indicates the aver-
age trend of the simulated data to be greater or 
inferior than the observed data, reflecting the sys-
tematic predictive model for the under- or overes-
timation (Rodrigues et al., 2020) of the dependent 
variable. Zero values indicate a perfect fit, its cal-
culation is obtained as (Büchele et al., 2019):

(13)

where:  is the observed data, 
  is the data obtained by the y model, 
 n is the number of observations.

RESULTS AND DISCUSSION

Descriptive statistics

The average EF analyzed for Ecuador from 
1961 to 2016 was 1.74±0.3 hag per capita. EF 
reached a low value of 1.16 in 1963. In 1999, 
however, it reached a value of 2.3 hag per capita, 
with a low annual variability. The average bioca-
pacity was 3.89±0.3 hag, a value which was high-
er than EF, this shows the ecological reserve for 
the 56 years analyzed in the study (Table 1). Until 
2016, Ecuador consumed the ecological resourc-
es from its own production, without depleting its 
domestic ecological assets, with low air pollution 
in residual carbon dioxide emissions. In other 
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words, it has not imported biocapacity through 
international trade (Danish et al., 2020). In addi-
tion, GDP, population and CO2 emissions were 
analyzed. GDP in USD at constant prices in 2010 
has been highly variable from year to year, but 
its average was $39.79 billion dollars. The year 
1961 presented the lowest income, whereas in 
2016, it reached 86.42 billion dollars. Similarly, 
the total population has the minimum population 
values for 1961 and in 2016 its maximum value, 
its average was 10.120.856 inhabitants with mod-
erately low variability. Finally, the average CO2 
emissions were 18.372.76 kt, in 1962 and 2014 
the lowest and highest carbon dioxide emissions 
were generated, respectively. GDP and the CO2 
emissions showed great year-over-year variabil-
ity (Table 1).

Long-term trend analysis

The long-term trend analysis using the 
Mann-Kendall non-parametric test showed that 
from 1961 to 2016, there were significant posi-
tive trends (p<0.001) for EF, with an increase 
of 0.015 hag per capita/year. Similarly, positive 
increases (p<0.001) of GDP of USD 1.2 billion 
were determined at constant prices in 2010 per 
year, 216.375 inhabitants/year and 718.6 kt/year 
of CO2 emissions. Nevertheless, a significant neg-
ative linear trend (p<0.01) for biocapacity with 
a decrease of 0.086 hag per capita/year was also 
found (Figure 1). Therefore, biocapacity was de-
clining at a faster rate than EF. These results are 
consistent with Lin et al. (2018), where the global 
EF continues to overcome biocapacity and with 
the investigation of MAE (2013). The increase in 
EF in Ecuador during the 56 years of study reflects 
the excessive use of natural resources from year 
to year (Destek et al., 2018) and their consequent 
impact on ecosystems and biodiversity (Galli 
et al., 2014). On the other hand, the increase in 
the CO2 emissions is consistent with the work of 

Sánchez et al. (2020). Although MAE developed 
national climate change strategies in 2012, which 
proposed the policies and guidelines to reduce 
or stabilize the greenhouse gas emissions in the 
productive and social strategic sectors, the CO2 
emissions continued to increase. If the trends in 
these variables continue in subsequent years, the 
Ecuador’s nature reserves will run out and will 
not be able to renew, unless the human demands 
temporarily exceed the reserves of nature (Wack-
ernagel et al., 2018). 

The HE was increased due to population 
growth (r=0.78; p≤0.01), the increased demand 
for resources per person, and the fact that this 
country is a producer and exporter of raw materi-
als. Hence, it is using its biocapacity to supply 
resources to other countries (MAE, 2013). This 
automatically decreases the available biocapac-
ity per person (r=0.86; p≤0.01). Similarly, CO2 
(r=0.76; p≤0.01) and GDP increase the ecologi-
cal footprint (r=0.74; p≤0.01), this is due to the 
economic growth presented by a country (Na-
thaniel et al., 2020; Ahmed et al., 2020) and asso-
ciated with the increasing levels of CO2 emissions 
(Rentería et al., 2016).

Empirical model

A correlation chart was made between all 
variables: EF, biocapacity, population (number 
of inhabitants), CO2 and GDP emissions. Con-
sidering this, exponential trends could be identi-
fied in the variables: population, biocapacity and 
GDP; consequently, it was decided to incorporate 
the ln(population), ln(biocapacity) and ln(GDP) 
variables into the initial set of variables. A regres-
sion model was tested with all variables, resulting 
in an adjusted-R2 of 0.8036, but with no signifi-
cant variables under the t-test (all p-values were 
greater than 0.1). A better model was then chosen 
through the backward removal algorithm using 
the AIC criterion, resulting in:

Table 1. Exploratory analysis of the study variables

Variable Mean Min Max Coefficient of 
variation

Ecological footprint in global hectares per capita 1.74 1.16 2.31 0.17

Biocapacity in global hectares per capita 3.899 1.99 7.6 0.39
Gross domestic product in US$ at constant prices in 
2010 (billions) 39.790 10.690 86.420 0.55

Total population 10.120.856 4.674.172 16.491.115 0.36

Emissions of CO2 in kt 18.480 1.566 46.153 0.67
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(14)

where: EF: ecological footprint (hag), 
P: population (number of inhabitants), 
B: biocapacity: ln(B): natural logarithm of 
biocapacity, 
ln (GDP): natural logarithm of GDP.

Under this proposed model, all variables are 
signifi cant (p≤0.05) and an adjusted-R2 of 0.8129 
is obtained. The CO2 variable does not remain in 
the fi nal model, a possible explanation is that by 
having a high correlation with the other variables, 
this could be explained by them, without requir-
ing their presence in the selected model. 

On the basis of the model, it can be concluded 
that for each new inhabitant (increased P by one 
unit) EF would be increased by gha; 
every time biocapacity increases in a gha unit, EF 
could decrease by 0.6 gha; for the variable ln(B), 
if it increases by one unit, EF is increased by 
4.841 gha; and fi nally, when ln(GDP) increases 
by one unit, the footprint increases by 0.905 gha.

Once the model was established, all the 
hypotheses needed to make it a valid linear re-
gression model were verifi ed. The scatter plots 
between each of the predictors and the model 
residuals showed a randomly distributed point 
cloud around zero, with constant variability along 

the X-axis. A straight line in the Q-Q chart shows 
that the residuals follow a normal distribution, as 
expected. On the other hand, when rendering the 
residuals against the values adjusted by the mod-
el, they are randomly distributed around zero, 
verifying that there is homoscedasticity. Model 
validation reports a Coeffi  cient of NSE very close 
to 1 (0.83), a small value of MSE (0.12), and a 
BIAS with a value close to zero (0.00015). This 
shows that the empirical model is robust and may 
represent the conditions of EF observed for the 
period of 1961 to 2016. These results are consis-
tent with the research for oil exporting countries 
such as Ecuador (Danish et al., 2020; Kassouri & 
Altıntaş, 2020). The EF regression model can be 
a tool that allows the country to better forecast 
the environmental trends and develop sustainable 
projects, which aim to ensure the well-being of 
every individual within planetary constraints, as 
recommended by Wackernagel et al. (2018).

CONCLUSIONS

The long-term trend was carried out using 
annual data during the period 1961–2016, the 
results have shown signifi cant changes in the 
increase in demographic, economic and envi-
ronmental indicators. The ecological footprint 
is increased due to the population and economic 
growth, which generates higher CO2 emissions. 
In contrast, biocapacity is declining in Ecuador 

Fig. 1. Analysis of signifi cant trends in Ecuador at 99% signifi cance level for ecological 
footprint (a), biocapacity (a), GDP (b), total population (c) and CO2 emissions (d).
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at a faster rate than its ecological footprint. This 
means that in a few years, the country will deplete 
its ecological assets.

The determination of the empirical model of 
multiple linear regression of the ecological foot-
print considered the total population, GDP in US$ 
at constant prices for 2010, biocapacity and loga-
rithmic transformations of these as returners. This 
robust and easy-to-interpret model enables accu-
rate ecological footprint predictions and can be 
a tool to better forecast the future environmental 
trends and develop sustainable projects in Ecuador.

This is an initial short-term model, useful for 
explaining the ecological footprint in Ecuador. 
Like others, this model can be improved based on 
the new challenges that mankind faces due to its 
current environmental culture. In addition, new 
variables could be added to this proposal, con-
sidering the actions of the Ecuadorian economic, 
political and social entities participating, either 
directly or indirectly in the behavior of the eco-
logical footprint.
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